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Abstract
Through an explicit calculation for a Lagrangian in quantum electrodynamics
in (2+1)-spacetime dimensions (QED3), making use of the relativistic Kubo
formula, we demonstrate that the filling factor accompanying the quantized
electrical conductivity for massive Dirac fermions of a single species in two
spatial dimensions is a half (in natural units) when time reversal and parity
symmetries of the Lagrangian are explicitly broken by the fermion mass term.
We then discuss the most general form of the QED3 Lagrangian, for both
irreducible and reducible representations of the Dirac matrices in the plane,
with emphasis on the appearance of a Chern–Simons term. We also identify
the value of the filling factor with a zero field quantum Hall effect (QHE).

PACS numbers: 73.43.−f, 10.10.Kk, 11.30.Er

1. Motivation

One of the most remarkable phenomena in condensed matter physics discovered in the last few
decades of the past century is, indeed, the quantum Hall effect (QHE)—a striking manifestation
of quantum mechanics at the macroscopic level. The experimental observation of QHE
is the vanishingly small diagonal electrical conductivity σxx → 0 of a bidimensional non-
relativistic electron gas subject to a strong perpendicular magnetic field, while the off-diagonal
conductivity is quantized according to

σxy = −ν
e2

2π
(1)

in natural units (h̄ = c = 1), where e is the electron charge and ν is the so-called filling
factor. This is defined as the ratio of the density of electrons in the sample to the magnetic
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field strength, and can be a small integer, dubbed as integer QHE (IQHE) [1], or a fraction
with odd denominator, the so-called fractional QHE (FQHE) [2]. In view of the lack of
relativistic corrections [3, 4] to the quantization rule (1), a description of the QHE in terms of
a full-fledged relativistic quantum field theory is highly desirable. Quantum electrodynamics
in (2+1)-spacetime dimensions, QED3, provides a natural framework for this purpose. This
theory has useful applications, for example, in high-Tc superconductivity [5] and in the field
of dynamical chiral symmetry breaking, where it provides an attractive battleground for lattice
and continuum studies [6]. More recently, QED3 has been made use of in the description of the
unconventional QHE in graphene [7]. This material consists of an isolated single atomic layer
of graphite, an ideal realization of a bidimensional system, which exhibits an unusual half-
integer QHE in which massless ‘relativistic’ carriers participate in the effect. A word of caution
is at hand, since the term ‘relativistic’ in the effective description of condensed matter systems
of this kind has nothing to do with the familiar Lorentz symmetry in (2+1)-dimensions of the
high energy physics (HEP) realm. Such a symmetry is not present in systems like graphene
simply because the corresponding Dirac Lagrangian contains the Fermi velocity, vF , instead
of the velocity of light, c. This explains the use of the quotation marks. Charge carriers
in graphene are ‘relativistic’ in the sense that their energy–momentum dispersion relation is
linear as opposed to the standard quadratic dispersion relation of non-relativistic systems. In
this paper, however, we give an idealized description of the QHE in terms of QED3, which, of
course, afterwards would have to be adapted to the real physical systems with their observed
continuous and discrete symmetries.

An ideal tool for the computation of the transverse conductivity, and thus of the
corresponding filling factor, is the Kubo formula [8]. Its field theoretical analog in the
non-relativistic case was introduced in [9] based upon gauge invariance in terms of the Ward–
Green–Takahashi identities [10]. The filling factor is found through

ν = 1

24π2

∫
d3p εµρλTr [∂µS−1(p)S(p)∂ρS−1(p)S(p)∂λS−1(p)S(p)], (2)

where S(p) is the electron propagator, εµρλ the Levi-Civita symbol and ∂µ = ∂/∂pµ. The
relativistic version of this expression preserves its functional form [4], thus allowing a
microscopic description of the QHE in terms of relativistic Dirac fermions. Pursuing this
aim, Acharya and Swamy (hereafter referred to as AS) established that QED3 naturally leads
to the IQHE [4]. They considered non-interacting electrons, i.e., particles whose (inverse)
propagator is simply given by

S−1(p) = /p − m, (3)

where m (assumed to be a positive quantity) is the effective mass of the electrons and they
choose the following irreducible representation of the γ -matrices in terms of the Pauli matrices:

γ 0 = σ 3, γ 1 = iσ 1, γ 2 = iσ 2, (4)

which verify γ µγ ν = gµν − iεµνλγλ with γµ = gµνγ
ν . This model has useful applications

in the description of one-dimensional polyacetylene [11]. In its full quantum field theoretical
form, it exhibits the so-called parity anomaly [12], which has a condensed matter realization
in a model which describes QHE without Landau levels [13]. Inserting the propagator (3) into
equation (2), with the aid of the properties of the Dirac matrices,
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Tr [γ µ] = 0

Tr [γ µγ ν] = 2gµν

Tr [γ µγ νγ λ] = −2iεµνλ

Tr [γ µγ νγ λγ σ ] = 2(gµνgλσ + gµσgνλ − gµλgνσ )

Tr [γ µγ νγ λγ σ γ ρ] = −2i(gµνελσρ + gλσ εµνρ + gσρεµνλ − gλρεµνσ ),

(5)

AS find

ν = 1

24π2

∫
d3p εµρλTr

[
γ µ

(
/p + m

p2 − m2

)
γ ρ

(
/p + m

p2 − m2

)
γ λ

(
/p + m

p2 − m2

)]

= 1

24π2

∫
d3p

(p2 − m2)3
εµρλTr [γ µ/pγ ρ/pγ λ/p + m3γ µγ ργ λ

+ m(γ µ/pγ ργ λ/p + γ µγ ρ/pγ λ/p + γ µ/pγ ρ/pγ λ)

+ m2(γ µγ ργ λ/p + γ µ/pγ ργ λ + γ µγ ρ/pγ λ)]

= 1

24π2

∫
d3p

12im(p2 − m2)

(p2 − m2)3

= im

2π2

∫
d3p

1

(p2 − m2)2
= −1

2
, (6)

where the result in the last line comes after a Wick rotation to Euclidean space and a standard
integration. Perhaps because this value of the filling factor does not correspond to the IQHE,
nor to the FQHE, AS tried to give sense to their findings making three crucial statements:

(i) because electrons possess 2 spin states, a factor of 2 should be put by hand in order to
obtain the IQHE.

(ii) The trace in equation (2) would have vanished for the usual QED4 matrices.

(iii) The Chern–Simons term plays no role whatsoever.

We find these statements misleading and, as such, these cast doubts on the results of
works based on them [14, 15]. Although we agree with AS in that the presence of the electron
mass is crucial for QED3 exhibiting ordinary QHE (and not the unconventional QHE found
in graphene), we shall argue that these three statements cannot be correct. Criticisms to the
‘factor of 2’ have already appeared in the literature [16, 17]. Yet, our approach, based upon
the analysis of the discrete symmetries (charge conjugation C, parity P , which for us is the
inversion of one spatial axis, and time reversal T ) of the QED3 Lagrangian, offers a new
understanding of the problems of these mishaps.

We have organized this paper as follows: in section 2 we discuss why the result in
equation (6) is in fact correct, by analyzing the Dirac particle spectrum when irreducible
representations of γ -matrices are chosen [18, 19]. Section 3 is devoted to the calculation
of the filling factor ν making use of the reducible representation of the usual γ -matrices of
QED4, considering all types of fermion masses which can be present in (2+1)-dimensions.
We discuss the most general form of the QED3 Lagrangian, with emphasis on the discrete
symmetries (C,P, T ) transformation properties of mass terms, both for electrons and photons
(Chern–Simons term) in section 4, and discuss how these can radiatively induce each other.
Finally, in section 5 we identify the half-filling factor state for a single electron species as a
zero magnetic field QHE and then summarize our findings.
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2. Irreducible Dirac fermions

We start by noting that the fermion propagator in equation (3) can be read off from the
(2+1)-analog of the usual free Dirac Lagrangian in 4D:

L = ψ̄(i �∂ − m)ψ, (7)

with the γ -matrices given in equation (4). The spectrum of solutions of the resulting Dirac
equation, which completes the corresponding Hilbert space, in the sense that the completeness
relations

∑
uū = /p + m and

∑
vv̄ = /p − m are fulfilled, is

ψP (x) =
(

1
px−ipy

E+m

)
e−ix·p ≡ u(p) e−ix·p

ψN(x) =
(px+ipy

E+m

1

)
eix·p ≡ v(p) eix·p,

(8)

and consists of only a positive energy solution (particle spinor with spin up), and a negative
energy one (antiparticle spinor with spin down) [18]. Yet, these solutions fail to incorporate
various symmetries of the ordinary Dirac spectrum in 4D. For example, the solutions, and
correspondingly the Lagrangian in its inherited form (7), are not invariant under a Parity
transformation P—which for consistency with Lorentz symmetry corresponds to the inversion
of one spatial axis, nor under a time reversal transformation T . Furthermore, only one out
of the two spin states of the physical electrons is present in (2+1)-dimensions if we consider
an irreducible representation for the Dirac matrices. This fact makes it clear that the result in
equation (6) is, in fact, correct and there is no need to put by hand the factor of 2 advocated
in [12] and made use of in [4, 14, 15]. One might argue that since in condensed matter
physics spin plays the role of flavor in HEP, one should in fact put the spin factor of 2 by
hand. However, one cannot simply push this argument to the idealized Lagrangian of QED3

we are considering here. We shall postpone the discussion of the half-filling state, and content
ourselves at this stage with the filling factor vanishing or not.

The two spin states and symmetry features of the familiar spectrum of solutions to the
Dirac equation in 4D can be recovered owing to the fact that in (2+1)-dimensions there exists
a second irreducible representation of the Dirac matrices in terms of the Pauli matrices, given
by

γ 0 = σ 3, γ 1 = iσ 1, γ 2 = −iσ 2, (9)

with the property γ µγ ν = gµν +iεµνλγλ. Solutions of the Dirac equation in this representation
are

ψP (x) =
(px+ipy

E+m

1

)
e−ix·p ≡ u(p) e−ix·p

ψN(x) =
(

1
px−ipy

E+m

)
eix·p ≡ v(p) eix·p,

(10)

and correspond to particle spinor with spin down and antiparticle with spin up [18]. These
solutions fulfil the completeness relations

∑
uū = /p + m and

∑
vv̄ = /p − m, but also present

the lack of spin states and symmetry properties of the familiar 4D solutions. Nevertheless,
taking into account solutions for both representations, (4) and (9), attaching to them labels
A and B, respectively, we recover the features of the ordinary Dirac spectrum, namely, two
spin states for the electrons and their corresponding Lorentz conjugated positron states. The
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two ‘irreducible’ fermion fields can be cast into the following extended form of the free Dirac
Lagrangian [18, 19]3:

L = ψ̄A(i �∂ − m)ψA + ψ̄B(i �∂ + m)ψB. (11)

As we noted before, neither under P nor under T , the fields ψA and ψB transform onto
themselves. In fact, under C,P and T transformations, these fields transform as

(ψA)C = γ 2 eiη1(ψ̄A)T (ψB)C = γ 2 eiη2(ψ̄B)T

(ψA)P = −iγ 1 eiφ1(ψB) (ψB)P = −iγ 1 eiφ2(ψA)

(ψA)T = iγ 3 eiϕ1(ψ̄B)T (ψB)P = −iγ 3 eiϕ2(ψ̄A)T ,

(12)

where ηi, φi and ϕi, i = 1, 2, are constant phases. This shows that the extended Lagrangian
(11) is CPT invariant [19]. The model (11) has recently been considered to study the formation
of ψ̄ψ-condensates in the presence of magnetic fields even in the absence of fermion masses
[20]. For this Lagrangian, the fermion propagators are of the form (3), but now m alternates in
sign between ψA and ψB . Thus, since there are two fermion species in the Lagrangian (11),
the filling factor is [21]

ν = −1

2

∑
α

sgn(mα) (13)

where mα is the mass of fermion species α, and thus vanishes in this case. This result
is understandable because σxy is a P and T violating quantity, whereas the Lagrangian in
equation (11), from which we are deriving it, is not. Thus σxy , or equivalently ν, can only be
zero. This will be further clarified in section 4.

The presence of two irreducible fermion fields in (11) naturally suggests that these can be
merged into one reducible four-component spinor and hence we can make use of the ordinary
4×4 Dirac matrices of QED4. Nevertheless, care should be taken since, in (2+1)-dimensions,
further mass terms, besides the ordinary mψ̄ψ , can arise. Such an issue is discussed below.

3. Reducible Dirac fermions

If ordinary 4 × 4 Dirac matrices are made use of, only three of them are required to describe
the dynamics of electrons in (2+1)-dimensions, for example {γ 0, γ 1, γ 2}, which can be
represented as

γ 0 =
(

σ 3 0
0 −σ 3

)
, γ 1 =

(
iσ 1 0
0 −iσ 1

)
, γ 2 =

(
iσ 2 0
0 −iσ 2

)
. (14)

In that case, we have two other γ -matrices which commute with all the three matrices above,
in such a fashion that the corresponding massless Dirac Lagrangian is invariant under the
chiral-like transformations ψ → eiαγ 3

ψ, and ψ → eiαγ 5
ψ, that is, it is invariant under a

global U(2) symmetry with generators 1, γ 3, γ 5 and [γ 3, γ 5]. Here

γ 3 = i

(
0 I

I 0

)
, γ 5 = iγ 0γ 1γ 2γ 3 = i

(
0 I

−I 0

)
, (15)

I being the 2 × 2 unit matrix. This symmetry is broken by an ordinary mass term meψ̄ψ .
But there exists another mass term (sometimes referred to as Haldane mass term) which is
invariant under the ‘chiral’ transformations

moψ̄
i

2
[γ 3, γ 5]ψ ≡ moψ̄(iτ)ψ. (16)

3 Note that only one irreducible representation of the Dirac matrices, say (4) is used.

5
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If we write the 4-spinor as

ψ =
(

ψ1

ψ2

)
, (17)

we observe that under P and T , the upper and lower components of this spinor transform, up
to a phase, as [22]

(ψ1(t, x, y))P → σ 1ψ2(t,−x, y) (ψ2(t, x, y))P → σ 1ψ1(t,−x, y)

(ψ1(t, x, y))T → σ 2ψ2(−t, x, y) (ψ2(t, x, y))T → σ 2ψ1(−t, x, y).
(18)

Thus, the term meψ̄ψ is even under each of these transformations, but moψ̄(iτ)ψ is not,
although it is PT and thus CPT symmetric. Here the evenness and oddness of the mass terms
under P and T justify the use of the subscripts ‘e’ and ‘o’. The corresponding Euclidean
space free reducible Dirac Lagrangian in this case has the form

L = ψ̄(i �∂ − me − moτ)ψ, (19)

where the Euclidean Dirac matrices are chosen as

γ 0 =
(−iσ 3 0

0 iσ 3

)
, γ 1 =

(
iσ 1 0
0 −iσ 1

)
, γ 2 =

(
iσ 2 0
0 −iσ 2

)
, (20)

such that

γ 3 =
(

0 I

I 0

)
, γ 5 =

(
0 −I

I 0

)
, τ =

(
I 0
0 −I

)
. (21)

There are many planar condensed matter models in which the low energy sector can be written
as this effective form of QED3, for which the physical origin of the masses depends on the
underlying system [23]; for example d-wave cuprate superconductors [5], d-density-wave
states [24] and layered graphite [25], including graphene in the massless version [7]. The
reader should bear in mind that the discrete P and T symmetries discussed above do not have
direct relation to corresponding symmetries in two-dimensional condensed matter systems.
For example, there is no symmetry with respect to a reflection of one spatial coordinate in
graphene. Instead the space-inversion symmetry contains reflection of signs of two spatial
coordinates and the exchange of the A and B atoms of the honeycomb lattice and K± points in
the Brillouin zone. On the other hand, the time reversal operation, which flips the spin signs,
interchanges K±, but not sublattices.

In order to perform a calculation of the filling factor, it is convenient to introduce the
chiral-like projectors

χ± = 1
2 (1 ± τ), (22)

which verify [26] χ2
± = χ±, χ+χ− = 0, χ+ + χ− = I . The ‘right handed’ ψ+ and ‘left

handed’ ψ− fermion fields in this case are given by ψ± = χ±ψ . The χ± project the upper and
lower two component spinors (fermion species) out of the four-component ψ . The chiral-like
decomposition of the free fermion propagator is

S(p) = −
(

/p + m+

p2 + m2
+

χ+ +
/p + m−
p2 + m2−

χ−

)
≡ −(S+(p)χ+ + S−(p)χ−), (23)

where m± = me ± mo. Hence, the right- and left-handed projections of the filling factor can
be obtained from equation (2) as

ν± = 1

24π2

∫
d3p εµνλTr

[
∂µS−1

± S±∂ρS−1
± S±∂λS−1

± S±χ±
]
, (24)

6
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where we have omitted the dependence of the propagators on the fermion momentum p to
avoid cumbersome notation. With the aid of the relations

Tr [χ±] = 2,

Tr [γ µχ±] = 0,

Tr [γ µγ νχ±] = −2δµν,

Tr [γ µγ νγ αχ±] = ∓2εµνα,

Tr [γ µγ νγ αγ βχ±] = 2(δµνδαβ + δµβδνα − δµαδνβ),

(25)

the calculation of (24) becomes very similar to that in equation (6) :

ν± = εµρλ

24π2

∫
d3p Tr

[
γ µ

(
/p + m±
p2 + m2±

)
γ ρ

(
/p + m±
p2 + m2±

)
γ λ

(
/p + m±
p2 + m2±

)
χ±

]

= εµρλ

24π2

∫
d3p(

p2 + m2±
)3 Tr

[
γ µ/pγ ρ/pγ λ/pχ± + m3

±γ µγ ργ λχ±

+ m±(γ µ/pγ ργ λ/p + γ µγ ρ/pγ λ/p + γ µ/pγ ρ/pγ λ)χ±
+ m2

±(γ µγ ργ λ/p + γ µ/pγ ργ λ + γ µγ ρ/pγ λ)χ±
]

= ∓ 1

24π2

∫
d3p

12m±
(
p2 + m2

±
)

(
p2 + m2±

)3

= ∓ m±
2π2

∫
d3p

1(
p2 + m2±

)2 = ∓1

2
sgn(m±). (26)

This proves the usefulness of the chiral-like projectors. Note that these projectors only account
for the same degrees of freedom in a different basis.

From the above expressions, we obtain that

ν = ν+ + ν− = − 1
2 sgn(m+) + 1

2 sgn(m−). (27)

This gives ν = 0 if mo = 0, and ν = −1 if me = 0,− 1/2 coming from each fermion species.
Two comments are in order at this point: first, we have seen that even with the use of ordinary
γ -matrices, the trace in equation (24) yields a nonvanishing result, contrary to the claims of AS
[4]. This is so because of the presence of the mass term (16), which violates P and T just like
the ordinary fermion mass term in the irreducible Dirac Lagrangian (7). Not surprisingly, this
result comes about since the physical content of equations (2) and (24) is the same, regardless
of the representation of the γ -matrices. Second, since in the reducible representation of the
Dirac matrices two different species of electron fields are taken into account, each contributing
with −1/2 to the filling factor, QED3 with its full-fledged relativistic symmetry naturally leads
to the IQHE. The reader should be careful in the interpretation of this result. As we previously
pointed out, in condensed matter physics spin plays the role of flavor in HEP and two-
dimensional Dirac fermions, combined into a four-dimensional Dirac spinor, describe gapless
excitations near different nodal points of the Fermi surface, which in graphene, for example,
belong to the K± points in the extended Brillouin zone. In the absence of a magnetic field,
one in fact has to take the spin factor 2 by hand. In the case we are considering here, such a
factor comes from the flavor of fermions.

Note that it is only the P and T odd mass terms, both in the irreducible (7) and
reducible (19) Lagrangians which leads to a nonvanishing quantized conductivity, in agreement
with the general properties required for a theory to exhibit QHE [27]. This fact is important
because of the Coleman–Hill theorem [28], which states that such a mass term radiatively gives

7
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rise to a Chern–Simons term only at the one-loop level. So, it is desirable that such a term
appears directly in the bare Lagrangian. We shall now discuss the most general Lagrangian of
QED3 under this observation and we argue why the third comment of AS cannot be correct
either.

4. QED3 Lagrangian

To start with the discussion of the QED3 Lagrangian, let us recall that its 4D analog is of the
form

LQED = LDirac + Lγ + LGF + LInt, (28)

where

Lγ = − 1
4FµνF

µν, (29)

LGF is the gauge fixing Lagrangian, whose form is irrelevant in our discussion, and LInt is
the interaction term which minimally couples matter fields to the photon field. This form,
however, is not the most general in (2+1)-dimensions. Firstly, as we have seen in previous
sections, we can work with reducible and irreducible representations for the γ -matrices. If
we insist on sticking to a single irreducible representation, like the one in equation (4), the
ordinary mass term mψψ̄ breaks both the P and T invariance of LDirac. Furthermore, because
of the Coleman–Hill theorem [28], this mass term (and any other odd mass term) would
radiatively generate a Chern–Simons term (CST)

LCS = ϑ

4
εµρλF

µρAλ (30)

into the Lagrangian of QED3, which induces a gauge invariant topological mass for the photon.
In order to see that, consider the Lagrangian (28) with LDirac given in (7). The first radiative
correction to the current–current correlation function, out of which one can also compute the
transverse conductivity (see appendix), and that in the HEP language is known as the vacuum
polarization, is given by

�µρ(q) = ie2
∫

d3k

(2π)3
Tr

[
γ µ 1

�k − m
γρ

1

�k + �q − m

]
. (31)

One can see from the properties of the Dirac matrices (5) that the tensor structure of the
vacuum polarization is

�µρ(q) = �e
µρ(q) + �o

µρ(q)

=
(

gµρ − qµqρ

q2

)
�e(q

2) + imεµρλq
λ�o(q

2), (32)

where we have used once more the labels e and o for the even and odd parts of the vacuum
polarization under P and T transformations and the factor m is used for later convenience.
The tensor structure of the second term, which emerges from the trace of three γ -matrices,
induces a Chern–Simons interaction εµρλF

µρAλ, which at the level of Lagrangians corresponds
to (30). A similar argument follows forLDirac of the form (19). As we shall see in the appendix,
the linear part of �o(q

2) is related to the Hall conductivity and thus to the filling factor. With
the P and T preserving Lagrangian (11), the vacuum polarization has only the even tensor
structure, i.e., �o(q

2) ≡ 0, which readily implies σxy = 0 and thus ν = 0.
The CST also violates P and T , but is PT and thus CPT invariant (see, for example,

[29]). The converse is also true, if we start from a Lagrangian of QED3 which includes the
CST but no P and T violating fermion mass term, the CST would radiatively generate it

8
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[30], in such a fashion that fermions acquire their usual relativistic energy spectrum, with a
mass gap. Observe that in the case of the Dirac Lagrangian (11), no CST would be radiatively
induced, because the two fermion fields appear with different signs for their mass terms. Thus,
depending upon the choice of the representation for the Dirac matrices, we get three possible
choices for the QED3 Lagrangian :

• Case I : for the inherited Dirac Lagrangian (7),

LI
QED3

= ψ̄(i �∂ − m)ψ + Lγ + LGF + LInt +
ϑ

4
εµνλA

µF νλ. (33)

In this case, the mass term and the CST induce each other mutually. This is the most
general form of the Lagrangian if the representation (4) or (9) is chosen.

• Case II : for the extended Dirac Lagrangian (11),

LE
QED3

= ψ̄A(i �∂ − m)ψA + ψ̄B(i �∂ + m)ψB + Lγ + LGF + LA,B
Int . (34)

In this case there is no CST, because the signs of the fermion mass terms cancel between
them any contribution to (30).

• Case III : for the reducible Dirac Lagrangian (19),

LR
QED3

= ψ̄(i �∂ − me − moτ)ψ + Lγ + LGF + LInt +
ϑ

4
εµνλA

µF νλ. (35)

Here mo and the CST induce each other mutually.

Thus, as we have seen in the previous sections, only those P and T violating Lagrangians,
(33) and (35), give nonvanishing filling factors. Fermion masses which break P and T are
responsible for such contributions, and these and the CST generate each other radiatively.
Then, the sole presence of m in (33) or mo in (35) unveils the presence of the CST, a
statement that contradicts the third comment of AS. Below we discuss the consequences of
the symmetries of these Lagrangians and their connection to the nonvanishing filling factor.

5. Summary and discussion

When and if the Lagrangian for electrons, restricted to live in a plane, is not invariant under
the discrete symmetries of P and T , a non-vanishing transverse conductivity develops and
QHE emerges [27]. In this fashion, IQHE takes place as a result of the quantization conditions
for individual electrons in a magnetic field. The number of filled Landau levels, the filling
factor ν, is related to the induced effective action for the gauge field, namely, the CST, in
the vacuum of the electrons. If interactions between electrons play a role, bulk effects are
manifest, setting the scene for the FQHE to take place. In this effect, because of interactions
between electrons, Landau levels are filled only partially. This can be visualized as if electrons
were subject to an effective magnetic field, the external plus a fictitious field arising from their
many-body wavefunction statistical properties. In the particular case when Landau levels are
half filled, such an effective magnetic field vanishes. Thus, there is a duality between a system
of electrons in a magnetic field at ν = 1/2 and a system of non-interacting electrons which
exhibits QHE at the zero magnetic field [17, 31]. As such, this duality can be exploited to
obtain physical properties in a simpler manner.

For example, it was experimentally demonstrated that in a usual quantum Hall system, the
ν = 1/2 state is realized either in a wide single quantum well or a double quantum well [32].
Resonance of a surface sound wave with cyclotron orbits of charge carriers was also observed
in this system, although perhaps the most striking observation was that this system develops a
well-defined Fermi surface [33]. The theoretical explanation for the formation of such a Fermi
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surface and other features observed in this state was proposed [34] precisely making use of
this duality. Electrons in this case were considered non-relativistic in nature. The physical
picture is that this system is an electrical dipole created by electrons and vortices [35]. But
also models of massive relativistic Dirac fermions have been considered as a realization of this
duality. The role of a Dirac mass term of the P and T violating type (Haldane mass) was first
studied on the lattice to explain a QHE without Landau levels [13]. Later, such a mass was
shown to be important to explain the nature of transitions in the IQHE [36, 21], playing the role
of the energy in the usual treatment of the IQHE. In all these cases, the filling factor associated
with massive Dirac fermions of a single species was found to be a half, in agreement with
our findings. There is no problem with that because a single Dirac fermion is incapable of
reproducing the behavior of a system with a finite number of degrees of freedom per volume.
Lattice results suggest that there are always an even number of particles participating in the
effect, at least one of them being a massive spectator [21]. More recently, the ν = 1/2 result
of the zero field QHE has been nicely explained in geometrical terms [17], identifying the
corresponding conductivity with a solid angle, clarifying the problems with the ‘factor of 2’
of AS.

The identification of the discrete symmetries of the QED3 Lagrangian, related to the
different representations which can be given to the Dirac matrices and the appearance of the
CST, sets the basis of a complete understanding of the system of non-interacting fermions
which exhibits QHE without Landau levels. The duality between systems of interacting and
non-interacting fermions, in the light of the emergence of ‘relativistic’ condensed matter
systems, brings winds of optimism to the solution of current puzzles, like the minimal
conductivity in graphene [37].

In summary, we have undertaken an idealized microscopical description of the QHE in a
full-fledged relativistic quantum field theory, QED3, by means of the field theoretical version
of the Kubo formula, equation (2), written in terms of the fermion propagator. We have
observed that this theory naturally leads to a half-filling QHE per fermion species present in
the underlying Lagrangian, when P and T are explicitly broken by a fermion mass term. In
the process, we have examined three critical statements made by AS in [4] from a Lagrangian
point of view. We have found that for a single fermion species:

• there is no need to multiply this result by 2.
• The same result can be obtained considering the ordinary Dirac matrices, but considering

the usual fermion mass term and a P and T violating mass term, equation (16).
• CST is implicit in the result.

Indeed, if an irreducible representation of the γ -matrices is made use of, (i) the ordinary
mass term mψ̄ψ is odd under P and T ; and (ii) the ordinary spectrum of solutions of the
Dirac equation, although complete—in the sense that completeness relations are fulfilled—,
lacks two polarization states for the electron [18]. One of the most significant features of the
ordinary spectrum in 4D, namely, the existence of two spin states for electrons and positrons,
can be recovered owing to the fact that there exists a second irreducible representation of the
Dirac matrices which enforces us to consider two fermion species in an ‘extended’ Lagrangian
[18, 19], equation (11); however, this yields a vanishing filling factor. Also, merging two
different fermion species, making use of a reducible representation for the Dirac matrices, the
Kubo formula yields a half-filling factor per species, provided a P and T violating mass term,
equation (16), is included. Thus, we confirm that in order for a theory to exhibit QHE, its
underlying Lagrangian must be T (and P) violating, but CPT preserving [17, 27, 31]. In our
case, the fermion mass terms, m in (7) and mo in (19), are responsible for this. In the case
of graphene, where massless Dirac fermions participate in the effect, the external magnetic
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field is responsible for breaking the discrete symmetries. The vanishing of the filling factor in
graphene in the zero field limit has been shown by lattice simulations [13] and by continuum
studies [38]. Furthermore, a P and T violating fermion mass term radiatively generates a
CST [28] and vice versa [30], rendering the energy spectrum of massive Dirac fermions in its
usual relativistic (gapped) form. Thus, the sole presence of such a fermion mass implies the
presence of the CST in the underlying Lagrangian. The existence of the CST implies a Hall
conductivity, in this case characterized by a filling factor ν = 1/2 per species. The non-integer
nature of this ν suggests its origin as a bulk effect of a system of interacting fermions. Yet
it was computed considering non-interacting electrons. This apparent inconsistency is solved
by a duality argument: a system of interacting electrons of a single species in a magnetic field
at half-filling is visualized as a bidimensional gas of electrons at zero magnetic field which
exhibits QHE. This state is pictured as an electrical electron-vortex dipole [34].

In this fashion, the findings of AS, equation (6), which we have proved to be correct,
describe a very interesting physical system. Their misinterpretations, presumably stated to
enforce their results to the IQHE, cannot be correct. Hence, the findings of papers based on
AS reasoning, [14, 15], specially in the description of the FQHE, need further revision. A
key observation for the description of QHE for systems of relativistic fermions is the non-
invariance of the mass terms under spatial and time reflections. This becomes even more
relevant in systems like graphene, where a plethora of mass terms with a variety of spacetime
transformation properties can be considered [39]. The complete identification of such mass
terms in the dynamics of QHE in graphene is in progress.
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Appendix

The Hall conductivity is defined as the linear part of the current–current correlation
function [4] :

σxy = 1

3!
εµρλ

∂

∂qλ
�µρ(q2)

∣∣∣∣
q2=0

. (A.1)

From the tensor structure of the vacuum polarization (32), we see that the symmetric part of
the vacuum polarization, �

µν
e , vanishes upon contraction with the Levi-Civita symbol. Thus

σxy = 1

3!
εµρλ

∂

∂qλ
(imεµρηqη�o(q

2))

∣∣∣∣
q2=0

= im�o(0) +
im

3!
qη

∂

∂qη
�o(q

2)

∣∣∣∣
q2=0

. (A.2)

Now, from the vacuum polarization (31), we have that

�o(q
2) = −ie2

4π3

∫
d3k

1

[k2 − m2][(k + q)2 − m2]

= −ie2

4π
√

q2
ln

(
2m +

√
q2

2m −
√

q2

)
. (A.3)
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From this expression, it is not difficult to see that

�o(0) = −ie2

4πm
, q2 ∂

∂q2
�o(q

2)

∣∣∣∣
q=0

= 0, (A.4)

and thus

σxy = im�o(0) = e2

4π
. (A.5)

Comparing with (1), we again obtain ν = −1/2. Although we have used an irreducible
representation of the Dirac matrices in this calculation, the same result per fermion species
holds with a reducible representation, provided we consider the term m0ψ̄τψ . Furthermore,
note that �o(0) is precisely the coefficient of the CST in (30), thus the non-vanishing value of
filling factor is related to the non-vanishing of this coefficient, as we stated earlier.
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